General Assumptions

These are some general assumptions, the validity of which is required to generate a meaningful
solution.

$Assumptions = {(E>0Q, >0, m>0,L>0,k>0,T>0,R>0,s>0};

Description of the problem

In quantum mechanics, we usually aim at solving Schrédinger’s equation:
HY=EW,

where H is the Hamiltonian operator (assigned to energy), ¥ is the so-called wave function, and E is
the value of energy.

One convenient way of writing out H is to assume that
H=T+7,
that is, a sum of kinetic (T) and potential energy 1% operators.

While for most systems

definition of the potential energy depends on the interactions within the system. In case of a parti-
cle in a box, we usually assume that

V=0ifo<x<lL (where L is the length of the box), otherwise V = oo.

Solution of Schrodinger’s Equation

Let us first solve the 2" order ODE by specifying two boundary conditions:

solution[x_] = Fullsimplify[m[x] /. ReplaceAll[

hz
Fir‘st@DSolve[—— D[E[X], {X, 2}] = E&[X], €[X], x], {C[1] - A, C[2] _,B}]];
2m
Print["2(x) = ", solution[x]]
V2 x \mE V2 x mE
T(x) - ACos[—] +BSin[—]
f

h

Note that this is a family of functions, where A and B could, in principle, take any values. We are only
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concerned with cases in which W(0) = W(L) =0. Thus let us solve the following set of equations:

Reduce[ {
solution[@] == 0,
solution[L] ==
}> {A, B}]
V2 LmE V2 L+mE
Sin[T] - 088A =0 || |A= 0&&Sin[T] 4 08B == 0

From the above two conditions, only the first one is physically meaningful. Thus, A=0 and we have
a constraint on the value of E:

A=0;

V2 LmE

E=E/.Solve[ =nm, E][[lll;

h
Print["E = ", E]
n? 72 A?
E =
21L%m

The value of B can be calculated by normalizing the squared wave function to 1:
B =B /. FullSimplify|

Solve[Integrate[solution[x]?, {x, @, L}] == 1, B], Assumptions - {n € Integers}][2];
Print["B = ", B]
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We can now do some test plotting:

Plot[solution[x], {x, ©, L}]
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Quit[];
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Finding the fundamental equation

Let us start with the previously obtained energy expression:

72 h?

En =n> ;
2L%m

The probability of a given energy state to be filled is proportional to Exp [— % ] . Sum these up (that

is, integrate) to get the sum of probabilities for one molecule:

Qmol = ReplaceAll[ (Integrate[Exp[—%_], {n, 0, oo}])3, {|_3 - v}]

(MRT)3?2v

2 4/2 NA3 7372 13

The number of possible states for all molecules of 1 mole of the system is thus © = N—; omol™A,
from which:

Smolar = k (NA Log[Q@mol] - NA Log[NA] + kNA) ;
Smolar = R (Log[Qmol] - Log[NA] + 1)

(MRT)3?v

R -
2 /2 NA3 3/2 33

1-Log[NA] + Log[

Note that this is in fact the molar entropy. Rearrange this to express T as a function of the molar
entropy s:

T /. Solve[Smolar ==s, T ][1]

2,28
2e 373k NA%/3 1 n?

MR V2/3
Integrate to get the molar internal energy u:

u = Integrate[%, s];
k =R /NA;
m=M/NA;
u = FullSimplify[u]

33 (75 NAS/3 2

M V2/3
Multiply by n to get the internal energy U, solve for s, switch to extensive variables:
s /. FullSimplify[Solve[U == nu, s], Assumptions -» {C[1] == ©0}][11;
FullSimplify[n ReplaceAll[%, {v->V/n}], Assumptions » {n > 0}]

R- = RLog[
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